Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats.
نویسندگان
چکیده
This study tested the hypothesis that elevation of heat stress proteins by whole body hyperthermia is associated with a decrease in skeletal muscle atrophy induced by reduced contractile activity (i.e. , hindlimb unweighting). Female adult rats (6 mo old) were assigned to one of four experimental groups (n = 10/group): 1) sedentary control (Con), 2) heat stress (Heat), 3) hindlimb unweighting (HLU), or 4) heat stress before hindlimb unweighting (Heat+HLU). Animals in the Heat and Heat+HLU groups were exposed to 60 min of hyperthermia (colonic temperature approximately 41.6 degrees C). Six hours after heat stress, both the HLU and Heat+HLU groups were subjected to hindlimb unweighting for 8 days. After hindlimb unweighting, the animals were anesthetized, and the soleus muscles were removed, weighed, and analyzed for protein content and the relative levels of heat shock protein 72 (HSP72). Compared with control and HLU animals, the relative content of HSP72 in the soleus muscle was significantly elevated (P < 0.05) in both the Heat and Heat+HLU animals. Although hindlimb unweighting resulted in muscle atrophy in both the HLU and Heat+HLU animals, the loss of muscle weight and protein content was significantly less (P < 0.05) in the Heat+HLU animals. These data demonstrate that heat stress before hindlimb unweighting can reduce the rate of disuse muscle atrophy. We postulate that HSP70 and/or other stress proteins play a role in the control of muscle atrophy induced by reduced contractile activity.
منابع مشابه
The response of apoptotic and proteolytic systems to repeated heat stress in atrophied rat skeletal muscle
We examined the effect of repeated heat stress on muscle atrophy, and apoptotic and proteolytic regulation in unloaded rat slow- and fast-type skeletal muscles. Forty male Wistar rats (11 week-old) were divided into control (CT), hindlimb unweighting (HU), intermittent weight-bearing during HU (HU + IWB), and intermittent weight-bearing with heat stress during HU (41-41.5°C for 30 min; HU + IWB...
متن کاملAttenuation of unloading-induced rat soleus atrophy with the heat-shock protein inducer 17-(allylamino)-17-demethoxygeldanamycin.
We hypothesized that pharmacological induction of HSP70 would attenuate soleus atrophy development under 3 d of rat hindlimb unloading. Male Wistar rats were divided into control (C; n=7), 3-d hindlimb unloading (HUL; n=7), HUL with HSP90 inducer administration, 17-allylamino-17-emethoxygeldanamycin (17-AAG; 60 mg/kg, HUL+17-AAG, n=8). The relative weight of soleus muscle to body weight [soleus...
متن کاملIntermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle
BACKGROUND Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. METHODS Sixty male Wistar rats were randomly divided int...
متن کاملO-GlcNAc level variations are associated with the development of skeletal muscle atrophy.
O-linked N-acetylglucosaminylation (O-GlcNAc) is a regulatory posttranslational modification of nucleocytoplasmic proteins, which consists of the attachment of N-acetylglucosamine to serine or threonine residues of a protein. This glycosylation is a ubiquitous posttranslational modification, which probably plays important roles in many aspects of protein function. Our laboratory has previously ...
متن کاملPreventive effects of nucleoprotein supplementation combined with intermittent loading on capillary regression induced by hindlimb unloading in rat soleus muscle
Physical inactivity leads to muscle atrophy and capillary regression in the skeletal muscle. Intermittent loading during hindlimb unloading attenuates the muscle atrophy, meanwhile the capillary regression in the skeletal muscle is not suppressed. Nucleoprotein has antioxidant capacity and may prevent capillary regression. Therefore, we assessed the combined effects of intermittent loading with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2000